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Outline 

•  Problem 
•  Solution 
•  Results 
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Protuberance Heating Test (2007-Present) 

Test objectives: 
•  Duplicate and extend 60’s era test which is used for ET 

protuberance environments 

•  Obtain heating data useful for CFD model validation 

Models: 
•  11 different models of two-sided protuberances on a flat plate 

•  Protuberances mounted on a turn-table to permit varying cross-
flow angle 

•  Instrumented with thin-film gages and pressure taps (4 models) 
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Possibly relevant test background 

•  Run method: 
•  Model run in tunnel until temperatures come to a steady state (near adiabatic conditions) 
•  Data acquisition begins 
•  Heat pulse generated by bypassing a cooling unit in the tunnel circuit 
•  Heat pulse drives heating which is measured by thin film gages 
•  Heat pulse character a function of Mach number…development time varies from 5-12 

seconds…run times vary from 20-35 seconds 
•  Low thermal driving potential makes knowing the recovery factor important 
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1D vs. 3D Conduction Data Reduction Error 

•  Extended run times of LaRC UPWT test method, along with small model 
size, permits heat to conduct farther and deeper into the model than in 
traditional aerothermal test facilities 

- Thin-film reduction method assumes 1D conduction into semi-infinite slab 
- Actual test article has 3D geometric features and strong heating gradients 

•  Goal of present effort: 
•  Identify protuberances and gages susceptible to this reduction error 
•  Develop a process to quantify this error so that corrections may be applied 
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Analysis Process 

•  “3D conduction errors” are a data reduction error 

•  Have assessed conduction error using two different methods for defining the 
analytical ‘actual’ heating 

•  CFD – Brandon Oliver, JSC 

•  Wind tunnel data correlations – Dr. Keith Woodbury, University of Alabama 
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CFD-Based Analysis Overview 

Compressible Navier-Stokes CFD (OVERFLOW) 
•  Build grid 

•  Run solution at nominal pre-heat pulse freestream with adiabatic 
wall BCs to obtain recovery factor 

•  Re-converge solution with specified wall temperature BCs to 
obtain heat flux 

•  Combine results to obtain heat transfer coefficient distribution 

Finite-Element Thermal Model (FIN-S) 
•  Build grid 

•  Interpolate CFD recovery factor and heat transfer coefficient to 
thermal grid 

•  Run thermal model to steady state with pre-heat pulse total 
temperature to obtain initial thermal state 

•  Run heat pulse profile (taken from wind tunnel run data) to 
obtain surface temperature vs. time 

•  Process simulated surface temperature trace using Cook-
Felderman 

•  Compare Cook-Felderman heating value (1D) with known, 
applied heating value (3D) 
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Code and Data Loose Coupling Method To 
Simulate a Wind Tunnel Run 

Finite-Element 
Thermal 
Model •  Thermal model yields 

surface temperature vs. 
time 
     - Treat as ‘simulated data’ 

CFD Solution 
for StRe0.2 

CFD Solution 
for recovery factor 

Tunnel measured flow conditions 

Simulated surface 
temperature history 
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•  Thermal solver is run to steady-state with the pre-heat pulse total temperature  

•  Yields the temperature distribution during the ‘adiabatic’ portion of the run 

Compute “Adiabatic” Solution 
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Apply 1-D Reduction to Simulated Data 

Cook- 
Felderman 

•  Apply the Cook-Felderman reduction to the simulated temperature trace provided 
by thermal model 

•  This “1-D conduction” result is equivalent to the measured thin-film results 

•  Compute error using heat transfer coefficient instead of heat flux 
•  Adiabatic wall temperature error scales out a good portion of the heat flux error 

•  Positive error: Test over-predicts actual heating 
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•  3D conduction effects: 
•  Higher ‘observed’ heating near corners 

•  Washes out localized flow patterns 
• Cool streak on side of protuberance 

• Peak heating ahead of protuberance 

•  Lower ‘observed’ heating near the base of the protuberance 

Model 1, CFANGLE 180, Mach 1.50, No Turntable 

CFD Heating Distribution 1D Reduced Heating Distribution 
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Model 1, CFANGLE 180, Mach 1.50, No Turntable 
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Solution Verification 

•  Thermal model timestep convergence verified adequate (Δt=0.05s) 

•  Thermal model grid convergence 

•  Wall spacing and wall stretching ratio studied using flat plate with a peak heating heat transfer coefficient applied 

•  Models 10 & 11, Mach 1.50 runs with doubled grid resolution in all directions in the near-wall structured zones 

•  Model 9 & 10, Mach 2.16 compare qualitatively well with previous (much finer) grids 

•  Model 1 without turntable grid independence established for several surface and in-depth grid distributions 

•  CFD grid convergence 

•  Models 1 and 9, Mach 1.5 run with refined grids 

-  Small differences were observed 

-  Details in documentation 

•  New CFD solutions generated with better wall spacing, but could still use work 

•  Several previous protuberance solutions did not meet best practices standards for wall spacing 

•  Fine-spacing has introduced some noise into solutions 
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Grid Convergence 

•  Verified wall spacing with semi-infinite slab model 

•  Applied peak protuberance heating uniformly to flat plate 

•  Ran through a Mach 1.5 heat pulse 

•  Identified that wall spacing of 0.001” provided grid independent 1D reduction error level 

•  Flat plate solutions indicated -5% error due to constant material property assumption 

•  Verified with variable material property reduction  
using Chaleur & modified C-F to use  
temperature-dependent material properties 
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•  Model 10, Mach 1.50 

•  Grid resolution refined in all directions in the near-wall structured zones 

Grid Convergence 

Baseline Refined 

5.5% 

35% 

2.6% 

33% 
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•  Model 11, Mach 1.50 

•  Grid resolution refined in all directions in the near-wall structured zones 

Grid Convergence 

Baseline Refined 

17.9% 17.8% 
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Mach Number Trend 

•  Flow conditions favor higher dimensional heat flux for lower Mach numbers, 
leading to trend of decreasing error with Mach 

•  Extended time of test section 2 heat pulse causes increase in errors for Mach 3.51 
runs (20 sec vs 10 sec) 

•  Trend consistent on Models 9 & 10 

Mach 1.50 Mach 2.16 Mach 3.51 

Gage 43: 27% 
Gage 45: -2.3% 

Gage 43: 12% 
Gage 45: -1.3% 

Gage 43: 20% 
Gage 45: 1.1% 
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Size Trends 

•  Errors remain concentrated at corners 

•  Lower heating on shorter protuberance does not reduce percent error 

Model 4 Model 1 Model 11 

Highest Face Gage 
H ~ 23% Model 1 
Error: 39% 

Highest Face Gage 
H = Model 1 
Error: 22% 

Highest Face Gage 
H ~ 102% Model 1 
Error: 18% 
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Model 1 Cross Flow 

•  Cross flow does not significantly alter extent of errors from corners 

•  May not have to analyze all runs to determine correction factors 

CFANGLE 180 CFANGLE 120 CFANGLE 90 

Gage 30: -7.6% 
Gage 31: 26% 
Gage 41: -2.6% 
Gage 43: 22% 

Gage 30: -8.6% 
Gage 31: 3.2% 
Gage 41: -3.2% 
Gage 43: 32% 

Gage 30: -8.5% 
Gage 31: 5.1% 
Gage 41: 9.0% 
Gage 43: 14% 
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Model 6 Corner Gages 

•  Corner gages strongly affected by 3D effects 

•  Currently working to assess if improved heat flux numbers can be obtained by 
using cylindrical coordinates in corner thin-film reduction 

CFANGLE 180 CFANGLE 120 CFANGLE 30 

Don’t forget: Red contours indicate tunnel data is over-conservative 

30 

Gage 30: 25% 
Gage 33: 30% 

Gage 30: 40% 
Gage 33: 31% 
Gage 37: 25% 

Gage 33: 32% 
Gage 37: 41% 
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Model 1 Peer Review Requests 

•  Turntable has negligible effect on model error 

•  45 degree sloped face shows less error than 90 degree face 

With Turntable Without Turntable CFANGLE 0 

Gage 43: 22% 
Gage 40: 10.44% 

Gage 43: 22% 
Gage 40: 10.39% 

Gage 20: -6.9% 
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Cylinder vs. Block Protuberances 

•  Cylindrical protuberances show slight error due to surface curvature 
•  Could be fixed by computing 1D solution in radial coordinates 

•  Similar sensitivity to top surface in the vicinity of the corner 

Model 1 Model 9 Model 10 

Gage 43: 22% 
Gage 40: 10.44% 

Gage 23: 5.0% 
Gage 20: 5.9% 

Gage 23: 5.5% 
Gage 20: 35% 
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CFD Conduction Analysis Summary 

•  Trends in 1D/3D conduction data reduction error are identified 
•  Errors are typically overprediction errors 

•  Errors could be as significant as 40% for some isolated gages 

•  Primary conduction mode seems to be influence of ‘sides’ of otherwise 1D surfaces 

•  Localized heating features are present, but more difficult to define and are much more dependent on features 
generated by un-validated CFD turbulence models 

•  Limitations 
•  Since the ‘applied’ heating is based on un-validated CFD, it is possible that turbulence model 

failings are causing an overstatement of the data reduction error 

•  If ‘correction factors’ are computed based on this work, the ‘fixed’ data could not be technically 
used for CFD validation since CFD defined the corrections 
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Unit Problems 

•  Investigating various conduction  
loss modes with a 2D flat plate 

•  Thin wall (backface temp rise) 

•  1D reduction yields accurate answer  
for short period, then overprediction  
error rapidly grows   

•  Non-uniform (cubic) heating 

•  On higher heating side of profile,  
1D reduction yields underprediction 
that slowly grows in time 

•  Side heating 

•  Overprediction error begins very early and  
grows nearly linearly with time 

•  When combined with other modes, behaves as if superimposed on other errors 

•  Shaped To 

•  Small increase in total temperature for first 2 seconds, then up to same level as previous 

•  Increase in heat flux at 2 seconds overpowers previous errors for a brief time, but then errors trend to values 
without slow start 
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Comparisons to Pretest CFD – Mach 1.5 
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Comparisons to Pretest CFD – Mach 2.16 
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•  The conduction data reduction error is significant, but does not invalidate this 
dataset 

•  Significant errors are constrained to known gages near sharp changes in geometry 

•  Errors tend to be conservative for typical peak-heating gages 

•  Correlations which combine the inputs of many gages tends to reduce the influence of errors in a 
single gages 

•  Methods exist and are in development which can provide quantitative estimates of the bias error 
which can be removed from the data 

•  The conduction issue complicates the use of the raw data for model validation 
•  ‘Corrected’ data is only as good as the correction applied 

•  Other methods exist for getting the data and model data on similar terms for comparison 

Picking Up the Pieces… 
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•  Compute a correction factor based on observed reduction error: 

•  Assumes that error is relatively insensitive to the specific heating levels applied 

•  Can check the ‘fixed’ heating levels by running thermal model and determining if original 
observation is recovered with the 1D assumption  

•  Using tunnel-data as initial ‘Applied’ heating yielded good results on 90° face, but 
fell short where less spatial fidelity was built into boundary conditions 

Correction Factors 
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Thermal analysis based on tunnel data  
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•  Using CFD distributions to test the ‘Correction Factor’ approach yielded better results, but the 
answer is not perfect 

•  CFD distribution taken as the true applied heating 

•  A 3D thermal analysis yielded a set of ‘Measured’ observations which parallel the thin-film gage measurements 

•  Distributions based on the ‘Measured’ values used to drive a 3D thermal analysis and obtain the ‘1D Observed’ 
results 

•  Comparison between the ‘1D Observed’ and ‘Measured’ yield a correction factor 

•  Correction factor applied to ‘Measured’ values to yield the corrected estimate of the true heating 

Correction Factors 
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•  A simplified method is being developed which uses analytical solutions of the 
multi-dimensional heat equation to rapidly generate approximate correction factors 
without the need for CFD or FE thermal analysis 

•  Based solely on the ‘heating to side’ mode of 3D conduction 

•  Use will be for determining first-order estimate of conduction error 

•  Presently includes significant assumptions that eliminate the model for use in correcting data for 
high-fidelity validation 

•  Work is presently directed at adding ability to better represent underprediction estimates due to 
heat lost to the plate 

Correction Factors 
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Geometries and Grids 

Model 1 without turntable: 1.2 million nodes 

Model 1 with turntable: 1.3 million nodes 
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Geometries and Grids 

Model 5: 1.2 million nodes 

Model 4: 0.95 million nodes 
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Geometries and Grids 

Model 9: 0.67 million nodes 

Model 6: 1.4 million nodes 
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Geometries and Grids 

Model 11: 0.89 million nodes 

Model 10: 0.52 million nodes 


